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ABSTRACT: An efficient one-pot cascade to indoles and related fused
heterocycles has been demonstrated in renewable solvents, thereby
eliminating the previously required dipolar aprotic solvent. The copper-
catalyzed reaction proceeds with a range of bromobenzaldehydes to give
products in good yields. In addition, the external ligand-free cross-
coupling methodology provides convenient access to an investigational treatment for central nervous system disorders.
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■ INTRODUCTION

The indole nucleus is recognized as one the foremost
biologically significant moieties in nature and has delivered
several pharmaceutically intriguing compounds.1−8 Accord-
ingly, it has been the target of numerous synthetic
strategies.9−24 Other fused heterocyclesnotably furopyr-
roleshave shown promise in the treatment of central nervous
system (CNS) disorders, including schizophrenia, pain, and
neurodegeneration.25−32 Often, the synthetic methods appli-
cable to the indole ring system can also be utilized for these
related fused heterocycles.33−37 Unfortunately, many of the
strategies to indoles and other heterocyclic structures make use
of undesirable reagents, conditions, and/or solvents.
With a well-recognized need to reduce the environmental

footprint of pharmaceutical processes, newand greener
technologies are a current industry focus.38 We previously
reported a catalytic method to access diverse indole-2-
carboxylic esters under mild conditions in the absence of an
external ligand.24 This atom-economical39 and copper-catalyzed
methodology proceeded via a presumed three-step se-
quence(1) aldol condensation, (2) intramolecular C−N
cross-coupling via an advantageous six-membered cupracycle
(X = I or Br) in a Goldberg-type reaction,40,41 and (3)
deacylation (Scheme 1)to give the key heterocycles in good
yields. Yet the reaction utilized dipolar aprotic solvents, media
that negate any environmental benefit gained in reaction
solubility by requiring large amounts of additional organic
solvent and water to recover the product during workup.42,43

Typically, dipolar aprotic media are also not easily substituted, a
contemporary topic of discussion in green chemistry
circles.44−49 Herein, we report that the simple and efficient
one-pot three-step transformation can be conducted in more
benign solvents available from renewable resources.

■ RESULTS AND DISCUSSION
In our earlier report, we showed that iodo- (X = I) or
bromobenzaldehydes (X = Br) and glycine amido esters were
coupled in dimethyl sulfoxide (DMSO) under moderate
temperatures to efficiently give indole-2-carboxylic esters
(Table 1). This transformation was possible both in the
presence and absence of diamine ligand. The corresponding
chlorides (X = Cl) were not cooperative with the mild
conditions, regardless of whether the ligand was included.
While pleased with the success of the iodo-substituted
substrates, we proceeded to investigate the scope of the
ligandless reaction with ethyl acetamidoacetate (R2 = Me) and
the bromo-substituted variants (X = Br) due to greater
commercial availability as well as a focus on prevention of
toxic byproduct iodide salt waste.50,51
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Scheme 1. Greener Formation of Indoles and Related
Heterocycles
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Following a catalyst and solvent screen (Table 2), we found
that (1) copper(I) iodide was the superior mediator for the

ligandless reaction in DMSO (entries 1−3) and (2) most
organic solvents failed to give good conversion (compare
entries 4−10). This was unsurprising, as dipolar aprotic
solventsDMSO, DMF, etc.are believed to best compen-
sate for the absent external ligand in C−N cross-couplings.52

However, we eventually uncovered a select few media with
lower dipoles and reduced dielectric strengths (entries 11 and
12) that also allowed the desired reaction to occur. 2-
Methyltetrahydrofuran (2-MeTHF) and ethyl acetate
(EtOAc), both solvents available from sustainable resour-
ces,53,54 gave ethyl 1H-indole-2-carboxylate in comparable
yields to DMSO.55,56 In addition, these media obviated the
need for gratuitous organic solvent and excess water in the
aqueous workup due to sufficient phase separation and no need
to remove the DMSO reaction solvent.
Building on this discovery, we set out to investigate whether

the reaction in the more favorable solvents showed any
differences with the previous DMSO-based system (Table 3).
The catalyst loading as well as required equivalents of the base
were investigated to determine if the reaction was distinct from
the prior iteration. In the case of base loading, the experiments
performed similarly with yield of product decreasing as the

amount of base dropped below 2.0 equiv for both DMSO and
2-MeTHF, although more significantly for the latter solvent
(entries 1−6).
Furthermore, the reaction proceeded well with a reduced

catalyst loadingdown to 5 mol % indicating that additional
sustainability improvements were possible (compare entries 1,
4, 7−12). The transformation with 5 mol % catalyst in benign
solvents was demonstrated to be very practical as 5 and 10 g
scale experiments in 2-MeTHF and EtOAc, respectively,
proceeded as expected to give the desired product in 50−
53% isolated yield (Table 3, entries 11 and 12). Overall, the
methodology performed in a similar fashion in the sustainable
organic solvents as it had in the dipolar aprotic solvent DMSO,
an encouraging finding. This discovery implies that substitution
of dipolar aprotic solvents with greener variants should be
possible for other intramolecular reactions with functionalities
in favorable proximity to each other.
With the conditions refined, a variety of commercially

available bromobenzaldehydes were combined with ethyl
acetamidoacetate as coupling partner (Table 4). In each case,
the unoptimized transformation produced similar yields of the
desired indole-2-carboxylic ester when compared across the
three solvents (A) DMSO, (B) 2-MeTHF, and (C) EtOAc
(entries 1−7). There was no obvious difference in outcome
with regard to electron-rich vs electron-poor substrates.
In addition to the formation of substituted indoles, some

further heterocycles were realizable. Ethyl 1H-pyrrolo[2,3-
b]pyridine-2-carboxylate (Table 4, entry 8) was produced in
both DMSO and 2-MeTHF, albeit in lower than expected yield
(24−34%). Although not further investigated, the reduced
output for these 7-aza-indole reactions was suspected to result
from the absence of external ligand and coordination of copper
with the pyridine moiety in the substrate or product.
Most importantly, 3-bromofuran aldehyde successfully

participated in the 3-step transformation to efficiently produce
the fused heterocycle ethyl 4H-furo[3,2-b]pyrrole-5-carboxylate
in 50% isolated yield (Table 4, entry 9). As a compound under
investigation for serious CNS disorders, including schizophre-
nia, pain, and neurodegeneration, this product was sub-
sequently manufactured via a related method where the formyl
group was added to a precursor, 3-bromofuran, and the
synthesis telescoped over multiple steps to achieve greater
sustainability efficiencies.57

Table 1. Initial Investigation of One-Pot Three-Step
Formation of Ethyl 1H-Indole-2-carboxylate

entry X R2 mol % Cu mol % L T (°C) yield (%)a

1b I Ph 20 25 60 74
2b Br Ph 20 25 60 55
3b Cl Ph 20 25 60 ND
4 I Me 10 -- 25 61
5 Br Me 20 -- 25 47
6 Br Me 20 -- 80 53
7c Cl Me 20 -- 140 16

aIsolated yields (4.0 mmol 2-halobenzaldehyde, 1.2 equiv
EtO2CCH2NHCOR2, 16 h). bReactions with N,N′-dimethylethylene-
diamine ligand (L = DMEDA). cNo conversion observed at 80 °C;
severe decomposition at 140 °C.

Table 2. Examination of Copper Catalyst and Solvent

entry catalyst solvent yield (%)a

1 CuI DMSO 50
2 CuBr DMSO 33
3 CuCl DMSO 31
4 CuI CH3CN 36
5 CuI DMF 45
6 CuI NMP 12
7 CuI EtOH 5
8 CuI MEK ND
9 CuI toluene 21
10 CuI dioxane 19
11 CuI 2-MeTHF 59
12 CuI EtOAc 54

aIsolated yields (4.0 mmol 2-bromobenzaldehyde, 1.2 equiv
EtO2CCH2NHAc, 20 mol % CuI, 2.0 equiv Cs2CO3, 80 °C, 16 h).

Table 3. Investigation of Catalyst and Base Loading

entry mol % Cu equiv base solvent yield (%)a

1 20 2.0 DMSO 50
2 20 1.5 DMSO 46
3 20 1.0 DMSO 42
4 20 2.0 2-MeTHF 59
5 20 1.5 2-MeTHF 29
6 20 1.0 2-MeTHF 20
7 20 2.0 EtOAc 54
8 10 2.0 DMSO 50
9 10 2.0 2-MeTHF 48
10 5 2.0 DMSO 49
11b 5 2.0 2-MeTHF 50
12c 5 2.0 EtOAc 53

aIsolated yields (4.0 mmol 2-bromobenzaldehyde, 1.2 equiv
EtO2CCH2NHAc, 80 °C, 16 h). bReaction demonstrated on 5 g
(20 mmol) scale. cReaction demonstrated on 10 g (40 mmol) scale.
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■ CONCLUSION

In summary, we have developed a greener synthesis of indoles
and other fused heterocycles that improves on our previously
reported copper-catalyzed reaction, free of external ligand. The
significant improvement comes from the substitution of dipolar
aprotic media with renewable solvents2-MeTHF and
EtOActhat are derived from sustainable resources and
obviate the need for excessive organic solvents and superfluous
water during aqueous workup. Efficient access is enabled to a
series of diverse indole-2-carboxylic esters and, most notably,
the fused heterocycle ethyl 4H-furo[3,2-b]pyrrole-5-carbox-
ylate, a promising compound for the treatment of serious CNS
disorders. This work is encouraging for the exploration of
greener solvent substitutions in other intramolecular systems
where the positioning of complementary functionalities is
similarly favorable.
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